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Abstracts 
In this correspondence, an image resolution enhancement technique based on interpolation of the high frequency sub-

band images obtained by discrete wavelet transform (DWT) and the input image. The edges are enhanced by 

introducing an intermediate stage by using stationary wavelet transform (SWT). DWT is applied in order to decompose 

an input image into different sub-bands. Then the high frequency sub-bands as well as the input image are interpolated. 

The estimated high frequency sub-bands are being modified by using high frequency sub-band obtained through SWT. 

Then all these sub-bands are combined to generate a new high resolution image by using inverse DWT (IDWT). The 

quantitative and visual results are showing the superiority of the proposed technique over the conventional and state-

of-art image resolution enhancement techniques. 
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Introduction 
Resolution has been frequently referred as an 

important aspect of an image. Images are being 

processed in order to obtain more enhanced resolution. 

One of the commonly used techniques for image 

resolution enhancement is Interpolation. Interpolation 

has been widely used in many image processing 

applications such as facial reconstruction, multiple 

description coding, and super resolution. There are 

three well known interpolation techniques, namely 

nearest neighbor interpolation, bilinear interpolation, 

and bi-cubic interpolation. 

 

Image resolution enhancement in the wavelet domain 

is a relatively new research topic and recently many 

new algorithms have been proposed. Discrete wavelet 

transform (DWT) is one of the recent wavelet 

transforms used in image processing. DWT 

decomposes an image into different sub band images, 

namely low-low (LL), low high (LH), high-low (HL), 

and high-high (HH). Another recent wavelet transform 

which has been used in several image processing 

applications is stationary wavelet transform (SWT). In 

short, SWT is similar to DWT but it does not use 

down-sampling, hence the sub bands will have the 

same size as the input image. 

 

In this work, we are proposing an image resolution 

enhancement technique which generates sharper high 

resolution image. The proposed technique uses DWT 

to decompose a low resolution image into different sub 

bands. Then the three high frequency sub band images 

have been interpolated using bicubic interpolation. 

The high frequency sub bands obtained by SWT of the 

input image are being incremented into the 

interpolated high frequency sub bands in order to 

correct the estimated coefficients. In parallel, the input 

image is also interpolated separately. 

 

Finally, corrected interpolated high frequency sub 

bands and interpolated input image are combined by 

using inverse DWT (IDWT) to achieve a high 

resolution output image. The proposed technique has 

been compared with conventional and state-of-art 

image resolution enhancement techniques. The 

conventional techniques used are the following: 

interpolation techniques: bilinear interpolation and bi-

cubic interpolation, Wavelet zero padding (WZP). 

 

Digital image processing is an area characterized by 

the need for extensive experimental work to establish 

the viability of proposed solutions to a given problem.  

An important characteristic underlying the design of 

image processing systems is the significant level of 

testing & experimentation that normally is required 

before arriving at an acceptable solution. This 

characteristic implies that the ability to formulate 

approaches &quickly prototype candidate solutions 

generally plays a major role in reducing the cost & 

time required to arrive at a viable system   

implementation.  
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 An image is represented as a two dimensional 

function f(x, y) where x and y are spatial co-ordinates 

and the amplitude of ‘f’ at any pair of coordinates (x, 

y) is called the intensity of the image at that point 

 

Wavelets 
The Wavelet transform is a transform of this type. It 

provides the time-frequency representation. (There are 

other transforms which give this information too, such 

as short time Fourier transforms, Wigner distributions, 

etc.)Often times a particular spectral component 

occurring at any instant can be of particular interest. In 

these cases it may be very beneficial to know the time 

intervals these particular spectral components occur. 

For example, in EEGs, the latency of an event-related 

potential is of particular interest (Event-related 

potential is the response of the brain to a specific 

stimulus like flash-light, the latency of this response is 

the amount of time elapsed between the onset of the 

stimulus and the response). 

 

Wavelet transform is capable of providing the time 

and frequency information simultaneously, hence 

giving a time-frequency representation of the signal. 

How wavelet transform works is completely a 

different fun story, and should be explained after short 

time Fourier Transform (STFT) . The WT was 

developed as an alternative to the STFT. The STFT 

will be explained in great detail in the second part of 

this tutorial. It suffices at this time to say that he WT 

was developed to overcome some resolution related 

problems of the STFT, as explained in Part II.To make 

a real long story short, we pass the time-domain signal 

from various high pass and low pass filters, which 

filter out either high frequency or low frequency 

portions of the signal. This procedure is repeated, 

every time some portion of the signal corresponding to 

some frequencies being removed from the signal. 

 

Here is how this works: Suppose we have a signal 

which has frequencies up to 1000 Hz. In the first stage 

we split up the signal in to two parts by passing the 

signal from a high pass and a low pass filter (filters 

should satisfy some certain conditions, so-called 

admissibility condition) which results in two different 

versions of the same signal: portion of the signal 

corresponding to 0-500 Hz (low pass portion), and 

500-1000 Hz (high pass portion).Then, we take either 

portion (usually low pass portion) or both, and do the 

same thing again. This operation is called 

decomposition. 

 

Assuming that we have taken the low pass portion, we 

now have 3 sets of data, each corresponding to the 

same signal at frequencies 0-250 Hz, 250-500 Hz, 

500-1000 Hz.Then we take the low pass portion again 

and pass it through low and high pass filters; we now 

have 4 sets of signals corresponding to 0-125 Hz, 125-

250 Hz,250-500 Hz, and 500-1000 Hz. We continue 

like this until we have decomposed the signal to a pre-

defined certain level. Then we have a bunch of signals, 

which actually represent the same signal, but all 

corresponding to different frequency bands. We know 

which signal corresponds to which frequency band, 

and if we put all of them together and plot them on a 

3-D graph, we will have time in one axis, frequency in 

the second and amplitude in the third axis. This will 

show us which frequencies exist at which time ( there 

is an issue, called "uncertainty principle", which states 

that, we cannot exactly know what frequency exists at 

what time instance , but we can only know what 

frequency bands exist at what time intervals. 

 

The uncertainty principle, originally found and 

formulated by Heisenberg, states that, the momentum 

and the position of a moving particle cannot be known 

simultaneously. This applies to our subject as 

follows:The frequency and time information of a 

signal at some certain point in the time-frequency 

plane cannot be known.                              In other 

words: We cannot know what spectral component 

exists at any given time instant. The best we can do is 

to investigate what spectral components exist at any 

given interval of time. This is a problem of resolution, 

and it is the main reason why researchers have 

switched to WT from STFT. STFT gives a fixed 

resolution at all times, whereas WT gives a variable 

resolution as follows: Higher frequencies are better 

resolved in time, and lower frequencies are better 

resolved in frequency. This means that, a certain high 

frequency component can be located better in time 

(with less relative error) than a low frequency 

component. On the contrary, a low frequency 

component can be located better in frequency 

compared to high frequency component. 

 

The fourier transform 
In 19th century (1822*, to be exact, but you do not 

need to know the exact time. Just trust me that it is far 

before than you can remember), the French 

mathematician J. Fourier, showed that any periodic 

function can be expressed as an infinite sum of 

periodic complex exponential functions. Many years 

after he had discovered this remarkable property of 

(periodic) functions, his ideas were generalized to first 

non-periodic functions, and then periodic or non-

periodic discrete time signals. It is after this 

generalization that it became a very suitable tool for 
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computer calculations. In 1965, a new algorithm called 

fast Fourier Transform (FFT) was developed and FT 

became even more popular. Now let us take a look at 

how Fourier transform works: FT decomposes a signal 

to complex exponential functions of different 

frequencies. The way it does this, is defined by the 

following two equations:  

 
 

In the above equation, t stands for time, f stands for 

frequency, and x denotes the signal at hand. Note that 

x denotes the signal in time domain and the X denotes 

the signal in frequency domain. This convention is 

used to distinguish the two representations of the 

signal. FT Equation (1) is called the Fourier transform 

of x(t), and FT equation (2) is called the inverse 

Fourier transform of X(f), which is x(t).For those of 

you who have been using the Fourier transform are 

already familiar with this. Unfortunately many people 

use these equations without knowing the underlying 

principle. 

 

The signal x(t), is multiplied with an exponential term, 

at some certain frequency "f" , and then integrated over 

ALL TIMES !!! Note that the exponential term in FT 

Eqn. (1) can also be written as: Cos(2.pi.f.t)+ j. 

Sin(2.pi.f.t).......(3).The above expression has a real 

part of cosine of frequency f, and an imaginary part of 

sine of frequency f. So what we are actually doing is, 

multiplying the original signal with a complex 

expression which has sines and cosines of frequency f. 

Then we integrate this product. In other words, we add 

all the points in this product. If the result of this 

integration (which is nothing but some sort of infinite 

summation) is a large value, then we say that : the 

signal x(t), has a dominant spectral component at 

frequency "f". This means that, a major portion of this 

signal is composed of frequency f. If the integration 

result is a small value, than this means that the signal 

does not have a major frequency component of f in it. 

If this integration result is zero, then the signal does 

not contain the frequency "f" at all. 

 

It is of particular interest here to see how this 

integration works: The signal is multiplied with the 

sinusoidal term of frequency "f". If the signal has a 

high amplitude component of frequency "f", then that 

component and the sinusoidal term will coincide, and 

the product of them will give a (relatively) large value. 

This shows that, the signal "x", has a major frequency 

component of "f". 

 

However, if the signal does not have a frequency 

component of "f", the product will yield zero, which 

shows that, the signal does not have a frequency 

component of "f". If the frequency "f", is not a major 

component of the signal "x(t)", then the product will 

give a (relatively) small value. This shows that, the 

frequency component "f" in the signal "x", has a small 

amplitude, in other words, it is not a major component 

of "x". Now, note that the integration in the 

transformation equation (FT Eqn. 1) is over time. The 

left hand side of (1), however, is a function of 

frequency. Therefore, the integral in (1), is calculated 

for every value of f. 

 

The information provided by the integral, corresponds 

to all time instances, since the integration is from 

minus infinity to plus infinity over time. It follows that 

no matter where in time the component with frequency 

"f" appears, it will affect the result of the integration 

equally as well. In other words, whether the frequency 

component "f" appears at time t1 or t2, it will have the 

same effect on the integration. This is why Fourier 

transform is not suitable if the signal has time varying 

frequency, i.e., the signal is non-stationary. If only the 

signal has the frequency component "f" at all times 

(for all "t" values), then the result obtained by the 

Fourier transform makes sense. Note that the Fourier 

transform tells whether a certain frequency component 

exists or not. This information is independent of where 

in time this component appears. It is therefore very 

important to know whether a signal is stationary or 

not, prior to processing it with the FT. 

 

The Short Term Fourier Transforms: There is only 

a minor difference between STFT and FT. In STFT, 

the signal is divided into small enough segments, 

where these segments (portions) of the signal can be 

assumed to be stationary. For this purpose, a window 

function "w" is chosen. The width of this window must 

be equal to the segment of the signal where its 

stationary is valid. 

 

This window function is first located to the very 

beginning of the signal. That is, the window function 

is located at t=0. Let's suppose that the width of the 

window is "T" s. At this time instant (t=0), the window 

function will overlap with the first T/2 seconds (I will 

assume that all time units are in seconds). The window 

function and the signal are then multiplied. By doing 

this, only the first T/2 seconds of the signal is being 

chosen, with the appropriate weighting of the window 
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(if the window is a rectangle, with amplitude "1", then 

the product will be equal to the signal). Then this 

product is assumed to be just another signal, whose FT 

is to be taken. In other words, FT of this product is 

taken, just as taking the FT of any signal. 

 

The result of this transformation is the FT of the first 

T/2 seconds of the signal. If this portion of the signal 

is stationary, as it is assumed, then there will be no 

problem and the obtained result will be a true 

frequency representation of the first T/2 seconds of the 

signal.The next step would be shifting this window 

(for some t1 seconds) to a new location, multiplying 

with the signal, and taking the FT of the product. This 

procedure is followed; until the end of the signal is 

reached by shifting the window with "t1" seconds 

intervals. 

 

The following definition of the STFT summarizes all 

the above explanations in one line:  

 
Please look at the above equation carefully. x(t) is the 

signal itself, w(t) is the window function, and * is the 

complex conjugate. As you can see from the equation, 

the STFT of the signal is nothing but the FT of the 

signal multiplied by a window function.For every ‘t' 

and ‘f’ a new STFT coefficient is computed 

(Correction: The "t" in the parenthesis of STFT should 

be "t'". I will correct this soon. I have just noticed that 

I have mistyped it). 

 

The following figure may help you to understand this 

a little better:  

 
Figure 1 

The Gaussian-like functions in color are the 

windowing functions. The red one shows the window 

located at t=t1', the blue shows t=t2', and the green one 

shows the window located at t=t3'. These will 

correspond to three different FTs at three different 

times. Therefore, we will obtain a true time-frequency 

representation (TFR) of the signal. 

 

Probably the best way of understanding this would be 

looking at an example. First of all, since our transform 

is a function of both ‘time’ and ‘frequency’ (unlike FT, 

which is a function of frequency only), the transform 

would be two dimensional (three, if you count the 

amplitude too). Let's take a non-stationary signal, such 

as the following one in figure 9:  

 
Figure 2 

 

In this signal, there are four frequency components at 

different times. The interval 0 to 250 ms is a simple 

sinusoid of 300 Hz, and the other 250 ms intervals are 

sinusoids of 200 Hz, 100 Hz, and 50 Hz, respectively.  

 

Apparently, this is a non-stationary signal. Now, let's 

look at its STFT:  

 
Figure 3 

 

As expected, this is two dimensional plots (3 

dimensional, if you count the amplitude too). The "x" 

and "y" axes are time and frequency, respectively. 

Please, ignore the numbers on the axes, since they are 

normalized in some respect, which is not of any 
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interest to us at this time. Just examine the shape of the 

time-frequency representation. 

 

First of all, note that the graph is symmetric with 

respect to midline of the frequency axis. Remember 

that, although it was not shown, FT of a real signal is 

always symmetric, since STFT is nothing but a 

windowed version of the FT, it should come as no 

surprise that STFT is also symmetric in frequency. The 

symmetric part is said to be associated with negative 

frequencies, an odd concept which is difficult to 

comprehend, fortunately, it is not important; it suffices 

to know that STFT and FT are symmetric. 

 

What is important, are the four peaks; note that there 

are four peaks corresponding to four different 

frequency components. Also note that, unlike FT, 

these four peaks are located at different time intervals 

along the time axis. Remember that the original signal 

had four spectral components located at different 

times.You may wonder, since STFT gives the TFR of 

the signal, why do we need the wavelet transform. The 

implicit problem of the STFT is not obvious in the 

above example. Of course, an example that would 

work nicely was chosen on purpose to demonstrate the 

concept. 

 

The problem with STFT is the fact whose roots go 

back to what is known as the Heisenberg Uncertainty 

Principle. This principle originally applied to the 

momentum and location of moving particles, can be 

applied to time-frequency information of a signal. 

Simply, this principle states that one cannot know the 

exact time-frequency representation of a signal, i.e., 

one cannot know what spectral components exist at 

what instances of times. What one can know is the 

time intervals in which certain band of frequencies 

exist, which is a resolution problem.The problem with 

the STFT has something to do with the width of the 

window function that is used. To be technically 

correct, this width of the window function is known as 

the support of the window. If the window function is 

narrow than its known as compactly supported. This 

terminology is more often used in the wavelet world, 

as we will see later. 

 

Recall that in the FT there is no resolution problem in 

the frequency domain, i.e., we know exactly what 

frequencies exist; similarly we there is no time 

resolution problem in the time domain, since we know 

the value of the signal at every instant of time. 

Conversely, the time resolution in the FT, and the 

frequency resolution in the time domain are zero, since 

we have no information about them. What gives the 

perfect frequency resolution in the FT is the fact that 

the window used in the FT is its kernel, the exp{jwt} 

function, which lasts at all times from minus infinity 

to plus infinity. Now, in STFT, our window is of finite 

length, thus it covers only a portion of the signal, 

which causes the frequency resolution to get poorer. 

What I mean by getting poorer is that, we no longer 

know the exact frequency components that exist in the 

signal, but we only know a band of frequencies that 

exist: 

 

In FT, the kernel function, allows us to obtain perfect 

frequency resolution, because the kernel itself is a 

window of infinite length. In STFT is window is of 

finite length, and we no longer have perfect frequency 

resolution. You may ask, why don't we make the 

length of the window in the STFT infinite, just like as 

it is in the FT, to get perfect frequency resolution? 

Well, than you loose all the time information, you 

basically end up with the FT instead of STFT. To make 

a long story real short, we are faced with the following 

dilemma: 

 

If we use a window of infinite length, we get the FT, 

which gives perfect frequency resolution, but no time 

information. Furthermore, in order to obtain the 

stationary, we have to have a short enough window, in 

which the signal is stationary. The narrower we make 

the window, the better the time resolution, and better 

the assumption of stationary, but poorer the frequency 

resolution: 

- Narrow window ===> good 

time resolution, poor frequency 

resolution. 

- Wide window ===> good 

frequency resolution, poor time 

resolution.  

 

Stationary wavelet transforms 
The discrete stationary wavelet transform (SWT) is a 

un decimated version of DWT. The main idea is to 

average several detailed co-efficient which are 

obtained by decomposition of the input signal without 

downs sampling. This approach can be interpreted as 

a repeated application of the standard DWT method 

for different time shifts. 

 

The Stationary wavelet transform (SWT) is similar to 

the dwt except the signal is never sub sampled and 

instead the filters are up sampled at each level of 

decomposition. 
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Figure 4: 3-level SWT filter bank 

Each level's filters are up-sampled versions of the 

previous. 

 
Figure 5 

SWT filters The SWT is an inherently 

redundant scheme as each set of coefficients contains 

the same number of samples as the input – so for a 

decomposition of N levels there are a redundancy of 

2N. 

 

Wavelet reconstruction: The discrete wavelet 

transform can be used to analyze, or decompose, 

signals and images. This process is called 

decomposition or analysis. The other half of the story 

is how those components can be assembled back into 

the original signal without loss of information. This 

process is called reconstruction, or synthesis. The 

mathematical manipulation that effects synthesis is 

called the inverse discrete wavelet transforms 

(IDWT). To synthesize a signal using Wavelet 

Toolbox™ software, we reconstruct it from the 

wavelet coefficients: 

 

 

 
Figure 5 

Where wavelet analysis involves filtering and down-

sampling, the wavelet reconstruction process consists 

of up-sampling and filtering. Up-sampling is the 

process of lengthening a signal component by 

inserting zeros between samples: 

 
Figure 6 

The toolbox includes commands, like ‘idwt’ and 

‘waverec’, that perform single-level or multilevel 

reconstruction, respectively, on the components of 

one-dimensional signals. These commands have their 

two-dimensional analogs, idwt2 and waverec2. 

 

Reconstruction filters: The filtering part of the 

reconstruction process also bears some discussion, 

because it is the choice of filters that is crucial in 

achieving perfect reconstruction of the original signal. 

The down-sampling of the signal components 

performed during the decomposition phase introduces 

a distortion called aliasing. It turns out that by 

carefully choosing filters for the decomposition and 

reconstruction phases that are closely related (but not 

identical), we can “cancel out” the effects of aliasing.  

The low- and high-pass decomposition filters (L and 

H), together with their associated reconstruction filters 

(L' and H'), form a system of what is called quadrature 

mirror filters: 

 
Figure 6 

 

Reconstructing approximations and details: We 

have seen that it is possible to reconstruct our original 

signal from the coefficients of the approximations and 

details. 
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Figure 7 

 

It is also possible to reconstruct the approximations 

and details themselves from their coefficient vectors. 

As an example, let’s consider how we would 

reconstruct the first-level approximation A1 from the 

coefficient vector cA1. We pass the coefficient vector 

cA1 through the same process we used to reconstruct 

the original signal. However, instead of combining it 

with the level-one detail cD1, we feed in a vector of 

zeros in place of the detail coefficients vector: 

 
Figure 8 

 

The process yields a reconstructed approximation A1, 

which has the same length as the original signal S and 

which is a real approximation of it. Similarly, we can 

reconstruct the first-level detail D1, using the 

analogous process: 

 

 
Figure 9 

The reconstructed details and approximations are true 

constituents of the original signal. In fact, we find 

when we combine them that 

 

Equation (6) 

 

Note that the coefficient vectors cA1 and cD1 

— because they were produced by down-sampling and 

are only half the length of the original signal — cannot 

directly be combined to reproduce the signal. It is 

necessary to reconstruct the approximations and 

details before combining them. Extending this 

technique to the components of a multilevel analysis, 

we find that similar relationships hold for all the 

reconstructed signal constituents. That is, there are 

several ways to reassemble the original signal: 

 

 
Figure 10 

 

Wavelet families: Several families of wavelets that 

have proven to be especially useful .some wavelet 

Families are 

 Haar 

 Daubachies 

 Biorthogonal 

 Coiflets 

 Symlets 

 Morlet 

 Mexicanhat 

 Meyer 

 Other real 

wavelets 

 complex 

wavelets 

 

Haar: Any discussion of wavelets begins with Haar 

wavelet, the first and simplest. Haar wavelet is 

discontinuous, and resembles a step function. It 

represents the same wavelet as Daubechies db1. 
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Figure 11 

 

Daubechies: Ingrid Daubechies, one of the brightest 

stars in the world of wavelet research, invented what 

are called compactly supported orthonormal wavelets 

— thus making discrete wavelet analysis practicable. 

The names of the Daubechies family wavelets are 

written dbN, where N is the order, and db the 

“surname” of the wavelet. The db1 wavelet, as 

mentioned above, is the same as Haar wavelet. Here 

are the wavelet functions psi of the next nine members 

of the family: 

 

 
Figure 12 

 

Biorthogonal: This family of wavelets exhibits the 

property of linear phase, which is needed for signal 

and image reconstruction. By using two wavelets, one 

for decomposition (on the left side) and the other for 

reconstruction (on the right side) instead of the same 

single one, interesting properties are derived. 

 
Figure 13 

Coiflets:  Built by I. Daubechies at the request of R. 

Coifman. The wavelet function has 2N moments equal 

to 0 and the scaling function has 2N-1 moments equal 

to 0. The two functions have a support of length 6N-1. 

You can obtain a survey of the main properties of this 

family by typing waveinfo('coif') from the MATLAB 

command line 

. 

 
Figure 14 

Symlets: The symlets are nearly symmetrical wavelets 

proposed by Daubechies as modifications to the db 

family. The properties of the two wavelet families are 

similar. Here are the wavelet functions psi. 

 

 
Figure 15 

Morlet: This wavelet has no scaling function, but is 

explicit. 
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Figure 16 

 

Mexican Hat: This wavelet has no scaling function 

and is derived from a function that is proportional to 

the second derivative function of the Gaussian 

probability density function. 

 

 
Figure 16 

Meyer: The Meyer wavelet and scaling function are 

defined in the frequency domain. 

 
Figure 17: Meyer Wavelet 

 

Other Real Wavelets: Some other real wavelets are 

available in the toolbox: 

 Reverse Bi-orthogonal 

 Gaussian derivatives family 

 FIR based approximation of the 

Meyer wavelet 

Complex Wavelets: Some complex wavelet families 

are available in the toolbox: 

 Gaussian derivatives, Frequency B-

Spline 

 Morlet, Shannon 

 

Simulation results 

 
Figure 18: (a) Original low resolution Bird image.                           

(b) Bilinear Image.  

(c) Bi-cubic interpolated image.  

(d) Super resolved image using WZP. 

(e) Proposed technique. 

 
Figure 19: (a) Original low resolution Nebulae 

image. 

(b) Bilinear Image. 

(c) Bi-cubic interpolated image. 
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(d) Super resolved image using WZP. 

(e) Proposed technique. 

 

 

 
Figure 20: (a) Original low resolution House 

image. 

(b) Bilinear Image. 

(c) Bi-cubic interpolated image. 

(d) Super resolved image using WZP. 

(e) Proposed technique. 

 
Figure 21: (a) Original low resolution Sunset 

image. 

(b) Bilinear Image. 

(c) Bi-cubic interpolated image. 

(d) Super resolved image using WZP. 

(e) Proposed technique. 

Bilinear 

 
Bi-

cubic 

WZP Proposed 

Method 

File 

Name 

27.8195 29.8929 35.7398 35.8006 Sunset 

29.9443 31.9591 37.5773 37.7966 Bird 

30.7013 32.7232 38.0464 38.3842 Nebulae 

27.2191 29.2454 34.3577 34.7264 House 

Table 1: PSNR values’ comparison table for RGB 

images 

Conclusion 
This work proposes an image resolution enhancement 

technique based on the interpolation of the high 

frequency sub bands obtained by DWT, correcting the 

high frequency sub-band estimation by using SWT 

high frequency sub bands, and the input image. The 

proposed technique uses DWT to decompose an image 

into different sub bands, and then the high frequency 

sub band images have been interpolated. The 

interpolated high frequency sub band coefficients have 

been corrected by using the high frequency sub bands 

achieved by SWT of the input image. An original 

image is interpolated with half of the interpolation 

factor used for interpolation the high frequency sub 

bands. Afterwards all these images have been 

combined using IDWT to generate a super resolved 

imaged. The proposed technique has been tested on 

well-known benchmark images, where their PSNR 

and visual results show the superiority of proposed 

technique over the conventional and state-of-art image 

resolution enhancement techniques. 
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